Introduction
The global financial market is undergoing a structural shift. Various factors are driving this change, such as evolving consumer preferences, new regulations, and technological advances. All these factors influence the exploding volume of financial data1 and the potential amount of work required to catalog, process, and act upon it.
Artificial intelligence in finance and AI consulting as the technology's professional manifestation will be among the biggest enablers for these processes, as standard methodologies, legacy analytics systems, and statistical approaches fail to keep up2.
The new dynamic requires a cardinal shift in thinking and tactics from financial professionals all over the globe. This push should happen on an unprecedented scale, which would promise unimaginable gains for companies able to harness its full potential. That’s why the World Economic Forum pulls no punches when it addresses the transformative effects of AI and machine learning in finance as ‘the new physics of financial services’3 driven by hype, real achievements, and even fear.
In this report, we’ll review seven major use cases of AI in finance that help propagate this global transformation. We’ll cover some of their benefits and hopefully dispel some myths about artificial intelligence, its purpose, and real-life ROI for the financial sector.
This report tries to cover a broad spectrum of financial problems in order to highlight the massive extent of the AI revolution that’s been happening in the financial sector for the past couple of years. It will be useful for any finance professional, be they an executive in an international bank or a head of analytics in a small fintech startup.